Quantum Field Theory

Exercises in preparation for the exam 3: solutions

Exercise 1: two real scalar fields

a) This was already solved in Homework 2 In order to find the physical spectrum, one has to diagonalize
the kinetic term. In order to do so, define:

o1 = ( 01+ ©2)
¢2 = 2( — ¢2)

The different terms in the Lagrangian become
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In order to have a physmally acceptable theory, we need both kinetic terms to be positive (see homework 1),
SO :

gl <1 (3)
In order to find the physical masses, we canonically normalize the fields:
P and By = 22 (4)
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and we find :
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So we have two physical particles of masses m? = % and m3 = 1"j2g

Note : The case g = £1 is more subtle because the theory becomes strogly coupled and will not be treated
here. However, when A = 0, then we are left with (in the g = 1 case) :

2
m
L =0,$10"d1 + 7(& + ¢3) (6)
¢2 has no kinetic term and is called an auxiliary field. We can solve explicitly the equations of motion and
et : ¢ = 0. We are left with one physical particle of mass %

b) We will consider the case |g| < 1 and compute the cross-section for the process ®o(p1)P2(p2) —
®4(q1)®1(g2). The interaction Lagrangian relevant at tree-level for this process is :

AD2 D2
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There is only one Feynman diagram to consider :
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The square is immediate to take :
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and inserting this expression in the formula for the cross-section of a two to two scattering process in the

center of mass frame:
1 4m?2 dQ
do = M1 - T2 2 (10)
2¢/(s — 2m3)2 — 4m} s 32w

we get the cross section by integrating over the angular variable (don’t forget the factor 1/2 because of
identical particles in the final state) :
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Exercise 2: N fermions and 1 scalar with U(/N) symmetry

The building block for constructing the required Lagrangian are

{Zzﬁa(x)(l“/a)wa(x), sb(w)} (12)

and derivatives of these. Here I' = {1, 5,4, V.75, 0 } and O denotes any possible derivative. Furthermore,
we known that the canonical dimensions of the fields are:

[@l=1,  [¢a] =3/2. (13)

Then, recalling that derivatives have mass dimension 1, it is easy to realize that the most general Lagrangian
with canonical kinetic terms, whose operators have canonical dimension d < 4 is, up to irrelevant constants,
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The i factors ensure that all parameters are real. We can always shift the definition of the scalar field as

¢%¢+£§ (15)

so that the linear term c¢ disappear. We can also get rid of the term »."'_, PaY51be. Tt is easy to see this
using the Weyl decomposition of a Dirac field:

v=( 1), (16)



which gives:

(my — ipys) = (my —ip)xn + (my + ip)xiq = Me™"*xn + Met" i,

A — 2 ) - o (17)
=my + 1, a = arctan (u/M).
Then via a chiral rotation we can rewrite it in canonical form

n— ey, x — P = (my —ipys) — Mxn+ Mxq =M. (18)

This can also be seen working solely in Dirac notation. Indeed a chiral rotation acts on a Dirac field as'
P — ') = cos a1h 4 i sin ays 1. (19)
Such a transformation leaves the kinetic term unchanged. The mass terms are modified as follows:

Y(my — ipys)Y —(cos arh + i sin ahys) (my — ipys)(cos arh + i sin arys))

2

= [(cos a — sin? a)my, + 2 cos asin o u] ) (20)

+i [2sinacosamy — p(cos? o — sin® )] 5.
Then, choosing o = arctan (u/m)/2, we erase the second term. Notice that, as long as by /by # u/m we do

not modify the structure of the interaction Lagrangian. Then, we proved that the most general Lagrangian
we can write is?

2 n

L %(amﬁ - %dﬂ + > (i@ — my)a + 010 + 026" + 010 Y Patha +ib2d Y Vaystha.  (21)
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If no term vanishes, there is no parity assignment for ¢ which makes this Lagrangian parity invariant. Indeed
supposing

P
¢ —no, (22)
the quadratic Lagrangian is unchanged, but we have:
o oot ¢t et (23)
n _ p n B n B p n B
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This also shows that the Lagrangian is parity invariant choosing n = 1 if by = 0, but it can also be parity
invariant with n = —1if by = a; = 0.
Now suppose mg > 2m,,. We can compute the decay rate of ¢. The relevant interaction term is given by:

Lint D ¢ Z Ya (b1 + i bays)Va. (25)
a=1

The leading order contribution to the decay comes from the N processes ¢ — 1q1,. There is then one
Feyman diagram which contributes to the matrix element at leading order:

1 --¢>--- = i’ (k) (by + i b2y5)v°(q) = iM, (26)
1

1To prove this formula, expand €**75 = 1 4 ia7ys — %’yg ... and use 'yg = 1; finally compare with the Taylor expansion of sin
and cos.
2The coefficients appearing in (21) are in general different than thos in (14).



where r, s label the spin of the final particles. Then we get:
[MI? = [0°(q)(br + i by )u” (k)][@" (k) (b1 + i b2ys)v* ()] (27)

To compute the total decay rate, we sum over all final possible polarizations and we multipy by N to account
of all possible final states 1, ¥,, a =1,..., N:

Wz = NZ |./\/l|2 = NTr [(g — M¢)(b1 +ib2’75)(% + mw)(bl +ib2’}/5)] s (28)

T,8

where we used Y u"(k)a" (k) = (f 4+ my) and Y5 v°(q)0°(q) = (¢ — my). The trace is evaluated in the
standard way:

M = AN [(82 + 82)q -k — (62 — b)m3)] . (29)
Using then ,
mingz(q+k)2:2mi+2q-k = q-k:%—mi, (30)
we find
., m2 m2
IM|" = 4N lbi <2¢ —2mi> +b§2¢1 : (31)

The decay rate then follows. In the CM frame:

m2 m2
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In the limit NV — oo this diverges, as it is to be expected since ¢ can decay into N different pairs of particles.
What happens is that in the N — oo limit the real coupling constants of the system are v/ Nb; and v Nbs,
as the previous computation suggests. The limit N — oo with g fixed hence corresponds to a regime where
the theory becomes strongly coupled and the perturbative expansion breaks. The decay rate is instead well
defined in the limit N — oo, by — 0,by — 0 with Nb% = fixed and Nb% = fixed.

Exercise 3: modified O(2) model

In the case g = 0 the Lagrangian is manifestly invariant under O(2) rotations:
o; — (ﬁ; = Oij¢j, (OX= 0(2) (33)

To analyze the case g # 0 it is conveneint to use the Weyl decomposition of a Dirac field:
Na
= o ) 34
o=(%) (31)
which gives:

Y(p1 + ivsP2)h = (d1 +id2)xn + (d1 — id2) X7 =

2
(Z ¢%’> (e"xn + e ~"*x7) (35)

where o = arctan (¢1/¢2). Then the Lagrangian is invariant under a combined O(2) rotation of the scalar
fields and a chiral rotation of the Dirac field

Gi = ¢ = Oyij, = = e @D 2y o/ — arctan (¢ /¢h). (36)



There are two relevant interaction vertices:
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For each of these vertices, both t- and u-channel contribute to the process ¥y — 1. The the tree-level
amplitude receives contributions from 4 Feynman diagrams (time flows from left to right):

k,r K r k,r K r

/
p, )
here s, s’, 7, r" label the polarizations of the initial and final particles. Notice the sum over 3. ’fhen the matrix
element readb.
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Notice that there is a minus sign difference between ¢ and w channel.
We now need to square this matrix element, average over initial polarizations and sum over the final ones:

M= 1S IMP (39)

In doing this operation we have 4 x 4 = 16 terms. Four terms are just the square of each diagram:
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The remaining terms are just twice the six possible cross terms. Two of them vanish:
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The remaing four are all proportional to the same trace:
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These cross products appear with alternate sign when expanding the product and hence cancel out. Finally
we are left with:

— P (kK KN (k-p
M2 = 8¢ (p-p)( )2+ (- k) p)2 (50)
[(p=p)2 =m?"  [(p = ¥)? = m?]
In terms of the Mandelstam variables:
s=@+k) =0 +k)=2p k=2 F, (51)
t=@-p)=0k-K)?=-2pp =2k ¥, (52)
u=@p-—kK)Y=(k-p)=-2p-k==2k-p, (53)
we get:
o A 2 u?
M|* =2 + . 54
IMJ” =29 PRI (54)
The differential cross section in the center of mass frame (see Peskin 4.85 or solution 11) then is:
do — o dcosfd¢
= = 7 55
<dQ>CM M 128725 (55)
Finally, for m = 0, we get:
4
_ 9
Otot = 1675 (56)

Notice that the behaviour o ~ g*/s could have been guessed by dimensional analysis.



