
Quantum Field Theory

Exercises in preparation for the exam 3: solutions

Exercise 1: two real scalar fields

a) This was already solved in Homework 2 In order to find the physical spectrum, one has to diagonalize
the kinetic term. In order to do so, define:{

ϕ1 = 1√
2
(φ1 + φ2)

ϕ2 = 1√
2
(φ1 − φ2)

or equivalently

{
φ1 = 1√

2
(ϕ1 + ϕ2)

φ2 = 1√
2
(ϕ1 − ϕ2)

(1)

The different terms in the Lagrangian become

1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 →1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2

g∂µφ1∂
µφ2 →g

2
(∂µϕ1∂

µϕ1 − ∂µϕ2∂
µϕ2)

(φ2
1 + φ2

2) →(ϕ21 + ϕ22)

So :

L =
1

2
(1 + g)∂µϕ1∂

µϕ1 +
1

2
(1− g)∂µϕ2∂

µϕ2 +
m2

2
(ϕ21 + ϕ22) +

λ

4!
(ϕ21 + ϕ22)

2 (2)

In order to have a physically acceptable theory, we need both kinetic terms to be positive (see homework 1),
so :

|g| < 1 (3)

In order to find the physical masses, we canonically normalize the fields:

Φ1 =
ϕ1√
1 + g

and Φ2 =
ϕ2√
1− g

(4)

and we find :

L =
1

2
∂µΦ1∂

µΦ1 +
1

2
∂µΦ2∂

µΦ2 +
m2Φ2

1

2(1 + g)
+

m2Φ2
2

2(1− g)
+

λΦ4
1

4!(1− g)2
+

λΦ4
2

4!(1− g)2
+

2λΦ2
1Φ

2
2

4!(1− g2)
(5)

So we have two physical particles of masses m2
1 = m2

1+g and m2
2 = m2

1−g .

Note : The case g = ±1 is more subtle because the theory becomes strogly coupled and will not be treated
here. However, when λ = 0, then we are left with (in the g = 1 case) :

L = ∂µϕ1∂
µϕ1 +

m2

2
(ϕ21 + ϕ22) (6)

ϕ2 has no kinetic term and is called an auxiliary field. We can solve explicitly the equations of motion and
get : ϕ2 = 0. We are left with one physical particle of mass m√

2
.

b) We will consider the case |g| < 1 and compute the cross-section for the process Φ2(p1)Φ2(p2) →
Φ1(q1)Φ1(q2). The interaction Lagrangian relevant at tree-level for this process is :

Lint =
λΦ2

1Φ
2
2

12(1− g2)
(7)



There is only one Feynman diagram to consider :

ϕ2
2 = i

λ

12(1− g2)
× 4 = iM. (8)

The square is immediate to take :

|M|2 =
λ2

9(1− g2)2
, (9)

and inserting this expression in the formula for the cross-section of a two to two scattering process in the
center of mass frame:

dσ =
1

2
√
(s− 2m2

2)
2 − 4m4

2

|M|2
√

1− 4m2
1

s

dΩ

32π2
(10)

we get the cross section by integrating over the angular variable (don’t forget the factor 1/2 because of
identical particles in the final state) :

σ(Φ2Φ2 → Φ1Φ1) =
1

288π

λ2

(1− g2)2
1√

s
(
s− 4 m2

1−g

)
√
1− 4m2

s(1 + g)
. (11)

Exercise 2: N fermions and 1 scalar with U(N) symmetry

The building block for constructing the required Lagrangian are{
n∑
a=1

ψ̄a(x)(Γ/∂)ψa(x), ϕ(x)

}
(12)

and derivatives of these. Here Γ = {1, γ5, γµ, γµγ5, σµν} and ∂ denotes any possible derivative. Furthermore,
we known that the canonical dimensions of the fields are:

[ϕ] = 1, [ψa] = 3/2. (13)

Then, recalling that derivatives have mass dimension 1, it is easy to realize that the most general Lagrangian
with canonical kinetic terms, whose operators have canonical dimension d ≤ 4 is, up to irrelevant constants,

L =
1

2
(∂µϕ)

2 −
m2
ϕ

2
ϕ2 +

n∑
a=1

ψ̄a(i/∂ −mψ)ψa + i µ

n∑
a=1

ψ̄aγ5ψa + cϕ

+ a1ϕ
3 + a2ϕ

4 + b1ϕ

n∑
a=1

ψ̄aψa + i b2ϕ

n∑
a=1

ψ̄aγ5ψa.

(14)

The i factors ensure that all parameters are real. We can always shift the definition of the scalar field as

ϕ→ ϕ+
c

m2
ϕ

, (15)

so that the linear term cϕ disappear. We can also get rid of the term
∑n
a=1 ψ̄aγ5ψa. It is easy to see this

using the Weyl decomposition of a Dirac field:

ψ =

(
ηα
χ̄α̇

)
, (16)
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which gives:

ψ̄(mψ − iµγ5)ψ = (mψ − iµ)χη + (mψ + iµ)χ̄η̄ =Me−iαχη +Me+iαχ̄η̄,

M = m2
ψ + µ2, α = arctan (µ/M).

(17)

Then via a chiral rotation we can rewrite it in canonical form

η −→ eiα/2η, χ −→ eiα/2χ =⇒ ψ̄(mψ − iµγ5)ψ −→Mχη +Mχ̄η̄ = ψ̄Mψ. (18)

This can also be seen working solely in Dirac notation. Indeed a chiral rotation acts on a Dirac field as1

ψ → eiαγ5ψ = cosαψ + i sinαγ5 ψ. (19)

Such a transformation leaves the kinetic term unchanged. The mass terms are modified as follows:

ψ̄(mψ − iµγ5)ψ →(cosαψ̄ + i sinαψ̄γ5)(mψ − iµγ5)(cosαψ + i sinαγ5ψ)

=
[
(cos2 α− sin2 α)mψ + 2 cosα sinαµ

]
ψ̄ψ

+ i
[
2 sinα cosαmψ − µ(cos2 α− sin2 α)

]
ψ̄γ5ψ.

(20)

Then, choosing α = arctan (µ/m)/2, we erase the second term. Notice that, as long as b1/b2 ̸= µ/m we do
not modify the structure of the interaction Lagrangian. Then, we proved that the most general Lagrangian
we can write is2

L =
1

2
(∂µϕ)

2 −
m2
ϕ

2
ϕ2 +

n∑
a=1

ψ̄a(i/∂ −mψ)ψa + a1ϕ
3 + a2ϕ

4 + b1ϕ

n∑
a=1

ψ̄aψa + i b2ϕ

n∑
a=1

ψ̄aγ5ψa. (21)

If no term vanishes, there is no parity assignment for ϕ which makes this Lagrangian parity invariant. Indeed
supposing

ϕ
P−→ η ϕ, (22)

the quadratic Lagrangian is unchanged, but we have:

ϕ3
P−→ η ϕ3, ϕ4

P−→ ϕ4, (23)

ϕ

n∑
a=1

ψ̄aψa
P−→ η ϕ

n∑
a=1

ψ̄aψa, ϕ

n∑
a=1

ψ̄aγ5ψa
P−→ −η ϕ

n∑
a=1

ψ̄aγ5ψa. (24)

This also shows that the Lagrangian is parity invariant choosing η = 1 if b2 = 0, but it can also be parity
invariant with η = −1 if b1 = a1 = 0.

Now suppose mϕ > 2mψ. We can compute the decay rate of ϕ. The relevant interaction term is given by:

Lint ⊃ ϕ

n∑
a=1

ψ̄a(b1 + i b2γ5)ψa. (25)

The leading order contribution to the decay comes from the N processes ϕ → ψaψ̄a. There is then one
Feyman diagram which contributes to the matrix element at leading order:

ϕ1
1 = iūr(k)(b1 + i b2γ5)v

s(q) = iM, (26)

1To prove this formula, expand eiαγ5 = 1+ iαγ5 − 1
2
γ2
5 . . . and use γ2

5 = 1; finally compare with the Taylor expansion of sin
and cos.

2The coefficients appearing in (21) are in general different than thos in (14).
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where r, s label the spin of the final particles. Then we get:

|M|2 = [v̄s(q)(b1 + i b2γ5)u
r(k)][ūr(k)(b1 + i b2γ5)v

s(q)]. (27)

To compute the total decay rate, we sum over all final possible polarizations and we multipy by N to account
of all possible final states ψa ψ̄a, a = 1, . . . , N :

|M|
2
= N

∑
r,s

|M|2 = NTr
[
(/q −mψ)(b1 + i b2γ5)(/k +mψ)(b1 + i b2γ5)

]
, (28)

where we used
∑
r u

r(k)ūr(k) = (/k + mψ) and
∑
s v

s(q)v̄s(q) = (/q − mψ). The trace is evaluated in the
standard way:

|M|
2
= 4N

[
(b21 + b22)q · k − (b21 − b22)m

2
ψ

]
. (29)

Using then

m2
ϕ = p2 = (q + k)2 = 2m2

ψ + 2q · k =⇒ q · k =
m2
ϕ

2
−m2

ψ, (30)

we find

|M|
2
= 4N

[
b21

(
m2
ϕ

2
− 2m2

ψ

)
+ b22

m2
ϕ

2

]
. (31)

The decay rate then follows. In the CM frame:

Γ =
|M|

2

16πmϕ

√
1−

4m2
ψ

m2
ϕ

=
4N
[
b21

(
m2

ϕ

2 − 2m2
ψ

)
+ b22

m2
ϕ

2

]
16πmϕ

√
1−

4m2
ψ

m2
ϕ

. (32)

In the limit N → ∞ this diverges, as it is to be expected since ϕ can decay into N different pairs of particles.
What happens is that in the N → ∞ limit the real coupling constants of the system are

√
Nb1 and

√
Nb2,

as the previous computation suggests. The limit N → ∞ with g fixed hence corresponds to a regime where
the theory becomes strongly coupled and the perturbative expansion breaks. The decay rate is instead well
defined in the limit N → ∞, b1 → 0, b2 → 0 with Nb21 = fixed and Nb22 = fixed.

Exercise 3: modified O(2) model

In the case g = 0 the Lagrangian is manifestly invariant under O(2) rotations:

ϕi → ϕ′i = Oijϕj , O ∈ O(2). (33)

To analyze the case g ̸= 0 it is conveneint to use the Weyl decomposition of a Dirac field:

ψ =

(
ηα
χ̄α̇

)
, (34)

which gives:

ψ̄(ϕ1 + iγ5ϕ2)ψ = (ϕ1 + iϕ2)χη + (ϕ1 − iϕ2)χ̄η̄ =

√√√√( 2∑
i=1

ϕ2i

)(
eiαχη + e−iαχ̄η̄

)
, (35)

where α = arctan (ϕ1/ϕ2). Then the Lagrangian is invariant under a combined O(2) rotation of the scalar
fields and a chiral rotation of the Dirac field

ϕi → ϕ′i = Oijϕj , ψ → ψ′ = e−iγ5(α
′−α)/2ψ, α′ = arctan (ϕ′1/ϕ

′
2). (36)
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There are two relevant interaction vertices:

p q

k
= −ig,

p1

p2

q1

q2
= gγ5. (37)

For each of these vertices, both t- and u-channel contribute to the process ψψ → ψψ. The the tree-level
amplitude receives contributions from 4 Feynman diagrams (time flows from left to right):

2∑
i=1

q = p− p′

p, s

k, r

p′, s′

k′, r′

i

i

+

2∑
i=1

q′ = p− k′

p, s

k, r

p′, s′

k′, r′

i

i

here s, s′, r, r′ label the polarizations of the initial and final particles. Notice the sum over i. Then the matrix
element reads:

iM =− g2
i

(p− p′)2 −m2
[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)]

+ g2
i

(p− p′)2 −m2
[ū(p′, s′)γ5u(p, s)] [ū(k

′, r′)γ5u(k, r)]

+ g2
i

(p− k′)2 −m2
[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)]

− g2
i

(p− k′)2 −m2
[ū(k′, r′)γ5u(p, s)] [ū(p

′, s′)γ5u(k, r)]

(38)

Notice that there is a minus sign difference between t and u channel.
We now need to square this matrix element, average over initial polarizations and sum over the final ones:

|M|2 ≡ 1

4

∑
s,r

∑
s′,r′

|M|2. (39)

In doing this operation we have 4× 4 = 16 terms. Four terms are just the square of each diagram:∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)] {[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)]}†

=
∑
s,r

∑
s′,r′

[ū(p, s)u(p′, s′)ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)ū(k, r)u(k′, r′)]

= Tr
[
/p/p

′]Tr [/k/k′] = 16(p · p′)(k · k′),

(40)

∑
s,r

∑
s′,r′

[ū(p′, s′)γ5u(p, s)] [ū(k
′, r′)γ5u(k, r)] {[ū(p′, s′)γ5u(p, s)] [ū(k′, r′)γ5u(k, r)]}

†

=
∑
s,r

∑
s′,r′

[ū(p, s)γ5u(p
′, s′)ū(p′, s′)γ5u(p, s)] [ū(k

′, r′)γ5u(k, r)ū(k, r)γ5u(k
′, r′)]

= Tr
[
/pγ5/p

′γ5
]
Tr
[
/kγ5/k

′
γ5

]
= 16(p · p′)(k · k′),

(41)
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∑
s,r

∑
s′,r′

[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)] {[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)]}†

= . . . = Tr
[
/p/k

′
]
Tr
[
/k/p

′] = 16(p · k′)(k · p′),
(42)

∑
s,r

∑
s′,r′

[ū(k′, r′)γ5u(p, s)] [ū(p
′, s′)γ5u(k, r)] {[ū(k′, r′)γ5u(p, s)] [ū(p′, s′)γ5u(k, r)]}

†

= . . . = Tr
[
/pγ5/k

′
γ5

]
Tr
[
γ5/kγ5/p

′] = 16(p · k′)(k · p′).
(43)

The remaining terms are just twice the six possible cross terms. Two of them vanish:∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)] {[ū(p′, s′)γ5u(p, s)] [ū(k′, r′)γ5u(k, r)]}
†

=
∑
s,r

∑
s′,r′

[ū(p, s)γ5u(p
′, s′)ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)ū(k, r)γ5u(k

′, r′)]

= Tr
[
/pγ5/p

′]Tr [/kγ5/k′] = 0,

(44)

∑
s,r

∑
s′,r′

[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)] {[ū(k′, r′)γ5u(p, s)] [ū(p′, s′)γ5u(k, r)]}
†

= . . . = Tr
[
/pγ5/k

′
]
Tr
[
/kγ5/p

′] = 0.

(45)

The remaing four are all proportional to the same trace:∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)] {[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)]}†

=
∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)ū(p, s)u(k′, r′)ū(k′, r′)u(k, r)ū(k, r)u(p′, s′)]

= Tr
[
/p
′
/p/k

′
/k
]
,

(46)

∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)] [ū(k′, r′)u(k, r)] {[ū(k′, r′)γ5u(p, s)] [ū(p′, s′)γ5u(k, r)]}
†

=
∑
s,r

∑
s′,r′

[ū(p′, s′)u(p, s)ū(p, s)γ5u(k
′, r′)ū(k′, r′)u(k, r)ū(k, r)γ5u(p

′, s′)]

= Tr
[
/p
′
/pγ5/k

′
/kγ5

]
= Tr

[
/p
′
/p/k

′
/k
]
,

(47)

∑
s,r

∑
s′,r′

[ū(p′, s′)γ5u(p, s)] [ū(k
′, r′)γ5u(k, r)] {[ū(k′, r′)u(p, s)] [ū(p′, s′)u(k, r)]}

†

=
∑
s,r

∑
s′,r′

[ū(p′, s′)γ5u(p, s)ū(p, s)u(k
′, r′)ū(k′, r′)γ5u(k, r)ū(k, r)u(p

′, s′)]

= Tr
[
/p
′γ5/p/k

′
γ5/k
]
= Tr

[
/p
′
/p/k

′
/k
]
,

(48)

∑
s,r

∑
s′,r′

[ū(p′, s′)γ5u(p, s)] [ū(k
′, r′)γ5u(k, r)] {[ū(k′, r′)γ5u(p, s)] [ū(p′, s′)γ5u(k, r)]}

†

=
∑
s,r

∑
s′,r′

[ū(p′, s′)γ5u(p, s)ū(p, s)γ5u(k
′, r′)ū(k′, r′)γ5u(k, r)ū(k, r)γ5u(p

′, s′)]

= Tr
[
/p
′γ5/pγ5/k

′
γ5/kγ5

]
= Tr

[
/p
′
/p/k

′
/k
]
.

(49)
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These cross products appear with alternate sign when expanding the product and hence cancel out. Finally
we are left with:

|M|2 = 8g2

[
(p · p′)(k · k′)

[(p− p′)2 −m2]
2 +

(p · k′)(k · p′)
[(p− k′)2 −m2]

2

]
. (50)

In terms of the Mandelstam variables:

s = (p+ k)2 = (p′ + k′)2 = 2p · k = 2p′ · k′, (51)

t = (p− p′)2 = (k − k′)2 = −2p · p′ = −2k · k′, (52)

u = (p− k′)2 = (k − p′)2 = −2p · k′ = −2k · p′, (53)

we get:

|M|2 = 2g4

[
t2

[t−m2]
2 +

u2

[u−m2]
2

]
. (54)

The differential cross section in the center of mass frame (see Peskin 4.85 or solution 11) then is:(
dσ

dΩ

)
CM

= |M|2 d cos θdϕ
128π2s

. (55)

Finally, for m = 0, we get:

σtot =
g4

16πs
. (56)

Notice that the behaviour σ ∼ g4/s could have been guessed by dimensional analysis.
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